آموزش ترفندهای ویندوز و رجیستری

آموزش ترفندهای ویندوز و رجیستری 

آموزش ترفندهایی مفید در ویندوز و رجیستری ویندوز

ترفند شماره 1
نمایش سازندگان ویندوز Me و 98
را انتخاب نمایید Properties کلیک راست کنید وگزینه Desk Top برای این منظور روی
گزینه د3ِِِ Screen Saver Name رفته و در قسمت Screen Saver سپس رویه زبانه
تغییر دهید volcano آن را به Text را کلیک کرده و Settings را انتخاب کنید دکمه Text
--------------------------------------------------------------------------------

ادامه مطلب ...

مدرسه الکترونیک

مدرسه الکترونیک  

در 200 سال گذشته منافع توسعه صنعتی و فناوریهای پیشرفته جهان عمدتاً در خدمت کشورهای غنی بوده‌است. نسبت کشورهای فقیر به ثروتمند در سال 1800 میلادی یک به سه و در سال 1990 به یک به 60 رسیده است.

شبکه سازی بین تمام اجزای تشکیل دهنده یک نظام گسترده بدون بکارگیری فناوریهای مدرن اطلاعاتی و ارتباطی که اصلی‌ترین آنها اینترنت است ناممکن است. فن‌آوری اطلاعات و ارتباطات به ابزار و روشهایی اطلاق می‌شود که به نحوی اطلاعات در اشکال مختلف (صدا، تصویر، متن) جمع‌آوری، ذخیره، بازیابی، پردازش و توزیع می‌کند.

فناوری های ارتباطی نیز ابزار و روش هایی هستند که به منظور ایجاد ارتباط و انتقال پیام مورد استفاده قرار می‌گیرند.. قابلیت های فناوری های مدرن اطلاعاتی و ارتباطی (ICT) در ارائه خدمات بیشتر و بهتر شامل اطلاع رسانی، آموزش، مشاوره و حمایت های تجاری و فنی با استفاده از روش های مختلفی که تنها با استفاده از این فناوری ها مقدور می‌شود مانند روش های غیر همزمان ارتباط و گفتگو مانند گروه های خبری، پست الکترونیکی وکنفرانس های اینترنتی و یا روش گفتگو همزمان (Chat) لزوم استفاده از این فناوری ها را نشان می‌دهد.

اگر تا دیروز آموزش تنها از معلمان و مربیان سود می‌برد و کتاب بعنوان اصلی‌ترین منبع اطلاعاتی در امر آموزش محسوب می‌گشت. امروزه آموزش با روش ها و ابزارها و محیط های جدید ارتباطی روبرو شده است. پیشرفت های اخیر در صنعت کامپیوتر و اطلاع رسانی؛ ورود و ظهور شبکه‌های اطلاع رسانی محلی، ملی، منطقه‌ای و بین‌المللی به ویژه اینترنت؛ چند رسانه‌ای‌ها، فن‌آوری های ارتباطی و اطلاعاتی، ابزارها و روش های جدید را پیش روی طراحان، برنامه‌ریزان و مدیران و مجریان برنامه‌های آموزشی قرار داده است.

نفوذ فن‌آوریهای جدید به مراکز آموزشی (از مدارس تا دانشگاه) و حتی منازل، روابط ساده معلمی و شاگردی را به طور کلی دگرگون ساخته است. به این ترتیب الگوهای سنتی یادگیری متحول شده‌اند و کاربران با حجم گسترده‌ای از اطلاعات و دانش مواجه هستند.در حال حاضر بسیاری از کشورهای پیشرو در زمینه ارتباط از راه دور، در حال ایجاد و راه‌اندازی مدارس، دانشگاهها و کلاسهای الکترونیکی و به اصطلاح کلی آموزشهای مجازی یا توسعه نظامهای آموزشی سنتی خود هستند. ایجاد و راه‌اندازی این مؤسسات فواید بسیاری از قبیل افزایش

تعداد دانش‌آموز، حذف بسیاری از موانع فیزیکی وجغرافیایی، دسترسی سریع و مؤثر به منابع اطلاعاتی دنیا، امکان برقراری ارتباط بیشتر و گسترده تر بین معلمان و دانش‌آموزان ، جذب معلمان و اساتید و نیروی انسانی زبده و متخصص مورد نیاز از سراسر دنیا، حذف یا کاهش موانع و محدودیتهای دست وپا گیر اداری می‌باشد.

مدارس یا دانشگاههای الکترونیکی یا بطور کلی آموزش مجازی از طریق امکانات کامپیوتری از طریق اینترنت محل مناسبی برای بروز استعدادها، خلاقیت و نوآوری خواهند بود. از مهمترین دستاوردهای آن می‌توان به موارد زیر اشاره کرد:

- افزایش کیفیت یادگیری و آموخته‌های دانش‌آموزان و دانشجویان

- سهولت دسترسی به حجم بالایی از اطلاعات و دانشهای موجود در جهان

- دسترسی سریع و به موقع به اطلاعات در زمان بسیار اندک

- کاهش برخی از هزینه‌های آموزشی

- بالا بردن کیفیت، دقت و صحت مطالب درسی و علمی

- ارتقای علمی دانش‌آموزان و دانشجویان 

 

اساس کار بمب هسته ای

اساس کار بمب هسته ای 

شما احتمالاً در کتابهای تاریخ خوانده‌اید که بمب هسته‌ای در جنگ جهانی دوم توسط آمریکا علیه ژاپن بکار رفت و ممکن است فیلم‌هایی را دیده باشید که در آنها بمب‌های هسته‌ای منفجر می‌شوند.

شما احتمالاً در کتابهای تاریخ خوانده‌اید که بمب هسته‌ای در جنگ جهانی دوم توسط آمریکا علیه ژاپن بکار رفت و ممکن است فیلم‌هایی را دیده باشید که در آنها بمب‌های هسته‌ای منفجر می‌شوند. درحالیکه در اخبار می‌شنوید، برخی کشورها راجع به خلع سلاح اتمی با یکدیگر گفتگو می‌کنند، کشورهایی مثل هند و پاکستان سلاح‌های اتمی خود را توسعه می‌دهند.

ما دیده‌ایم که این وسایل چه نیروی مخرب خارق‌العاده‌ای دارند، ولی آنها واقعاً چگونه کار می‌کنند؟ در این بخش خواهید آموخت که بمب هسته‌ای چگونه تولید می‌شود و پس از یک انفجار هسته‌ای چه اتفاقی می‌افتد؟

انرژی هسته‌ای به 2 روش تولید می‌شود:

1- شکافت هسته‌ای: در این روش هسته یک اتم توسط یک نوترون به دو بخش کوچکتر تقسیم می‌شود. در این روش غالباً از عنصر اورانیوم استفاده می‌شود.

2- گداخت هسته‌ای: در این روش که در سطح خورشید هم اجرا می‌شود، معمولاً هیدروژن‌ها با برخورد به یکدیگر تبدیل به هلیوم می‌شوند و در این تبدیل، انرژی بسیار زیادی بصورت نور و گرما تولید می‌شود.

طراحی بمب‌های هسته‌ای:

برای تولید بمب هسته‌ای، به یک سوخت شکافت‌پذیر یا گداخت‌پذیر، یک وسیله راه‌انداز و روشی که اجازه دهد تا قبل از اینکه بمب خاموش شود، کل سوخت شکافته یا گداخته شود نیاز است.

بمب‌های اولیه با روش شکافت هسته‌ای و بمب‌های قویتر بعدی با روش گداخت هسته‌ای تولید شدند. ما در این بخش دو نمونه از بمب های ساخته شده را بررسی می کنیم:

بمب‌ شکافت هسته‌ای :

1- بمب‌ هسته‌ای (پسر کوچک) که روی شهر هیروشیما و در سال 1945 منفجر شد.

2- بمب هسته‌ای (مرد چاق) که روی شهر ناکازاکی و در سال 1945 منفجر شد.

بمب گداخت هسته‌ای : 1- بمب گداخت هسته‌ای که در ایسلند بصورت آزمایشی در سال 1952 منفجر شد.

بمب‌های شکافت هسته‌ای:

بمب‌های شکافت هسته‌ای از یک عنصر شبیه اورانیوم 235 برای انفجار هسته‌ای استفاده می‌کنند. این عنصر از معدود عناصری است که جهت ایجاد انرژی بمب هسته‌ای استفاده می‌شود. این عنصر خاصیت جالبی دارد: هرگاه یک نوترون آزاد با هسته این عنصر برخورد کند ، هسته به سرعت نوترون را جذب می‌کند و اتم به سرعت متلاشی می‌شود. نوترون‌های آزاد شده از متلاشی شدن اتم ، هسته‌های دیگر را متلاشی می‌کنند.

زمان برخورد و متلاشی شدن این هسته‌ها بسیار کوتاه است (کمتر از میلیاردم ثانیه ! ) هنگامی که یک هسته متلاشی می‌شود، مقدار زیادی گرما و تشعشع گاما آزاد می‌کند.

مقدار انرژی موجود در یک پوند اورانیوم معادل یک میلیون گالن بنزین است!

در طراحی بمب‌های شکافت هسته‌ای، اغلب از دو شیوه استفاده می‌شود:

روش رها کردن گلوله:

در این روش یک گلوله حاوی اورانیوم 235 بالای یک گوی حاوی اورانیوم (حول دستگاه مولد نوترون) قرار دارد.

هنگامی که این بمب به زمین اصابت می‌کند، رویدادهای زیر اتفاق می‌افتد:

1- مواد منفجره پشت گلوله منفجر می‌شوند و گلوله به پائین می‌افتد.

2- گلوله به کره برخورد می‌کند و واکنش شکافت هسته‌ای رخ می‌دهد.

3- بمب منفجر می‌شود.

در بمب هیروشیما از این روش استفاده شده بود.

روش انفجار از داخل:

در این روش که انفجار در داخل گوی صورت می‌گیرد، پلونیم 239 قابل انفجار توسط یک گوی حاوی اورانیوم 238 احاطه شده است.

هنگامی که مواد منفجره داخلی آتش گرفت رویدادهای زیر اتفاق می‌افتد:

1- مواد منفجره روشن می‌شوند و یک موج ضربه‌ای ایجاد می‌کنند.

2- موج ضربه‌ای، پلوتونیم را به داخل کره می‌فرستد.

3- هسته مرکزی منفجر می‌شود و واکنش شکافت هسته‌ای رخ می‌دهد.

4- بمب منفجر می‌شود.

بمبی که در ناکازاکی منفجر شد، از این شیوه استفاده کرده بود.

بمب‌ گداخت هسته‌ای: بمب‌های شکافت هسته‌ای، چندان قوی نبودند!

بمب‌های گداخت هسته‌ای ، بمب های حرارتی هم نامیده می‌شوند و در ضمن بازدهی و قدرت تخریب بیشتری هم دارند. دوتریوم و تریتیوم که سوخت این نوع بمب به شمار می‌روند، هردو به شکل گاز هستند و بنابراین امکان ذخیره‌سازی آنها مشکل است. این عناصر باید در دمای بالا، تحت فشار زیاد قرار گیرند تا عمل همجوشی هسته‌ای در آنها صورت بگیرد. در این شیوه ایجاد یک انفجار شکافت هسته‌ای در داخل، حرارت و فشار زیادی تولید می‌کند و انفجار گداخت هسته‌ای شکل می‌گیرد.در طراحی بمبی که در ایسلند بصورت آزمایشی منفجر شد، از این شیوه استفاده شده بود.

اثر بمب‌های هسته‌ای:

انفجار یک بمب هسته‌ای روی یک شهر پرجمعیت خسارات وسیعی به بار می آورد . درجه خسارت به فاصله از مرکز انفجار بمب که کانون انفجار نامیده می‌شود بستگی دارد.

زیانهای ناشی از انفجار بمب هسته‌ای عبارتند از :

- موج شدید گرما که همه چیز را می‌سوزاند.

- فشار موج ضربه‌ای که ساختمان‌ها و تاسیسات را کاملاً تخریب می‌کند.

- تشعشعات رادیواکتیویته که باعث سرطان می‌شود.

- بارش رادیواکتیو (ابری از ذرات رادیواکتیو که بصورت غبار و توده سنگ‌های متراکم به زمین برمی‌گردد)

درکانون زلزله، همه‌چیز تحت دمای 300 میلیون درجه سانتی‌گراد تبخیر می‌شود! در خارج از کانون زلزله، اغلب تلفات به خاطر سوزش ایجادشده توسط گرماست و بخاطر فشار حاصل از موج انفجار ساختمانها و تاسیسات خراب می‌شوند. در بلندمدت، ابرهای رادیواکتیو توسط باد در مناطق دور ریزش می‌کند و باعث آلوده شدن موجودات، آب و محیط زندگی می‌‌شود.

دانشمندان با بررسی اثرات مواد رادیواکتیو روی بازماندگان بمباران ناکازاکی و هیروشیما دریافتند که این مواد باعث: ایجاد تهوع، آب‌مروارید چشم، ریزش مو و کم‌شدن تولید خون در بدن می‌شود. در موارد حادتر، مواد رادیواکتیو باعث ایجاد سرطان و نازایی هم می‌شوند. سلاح‌های اتمی دارای نیروی مخرب باورنکردنی هستند، به همین دلیل دولتها سعی دارند تا بر دستیابی صحیح به این تکنولوژی نظارت داشته باشند تا دیگر اتفاقی بدتر از انفجارهای ناکازاکی و هیروشیما رخ ندهد.

پایان مطلب

آب مقطر

آب مقطر 

آب طبیعی به علت خاصیت حل کنندگی خوبی که دارد معمولا دارای حجم بالایی از نمکهای محلول در آب می‌شود. CO2 هوا به خاطر انحلال در آب و تولید اسید کربنیک ضعیف ، خاصیت خورندگی آب را بهبود می‌بخشد.

نگاه کلی: آب طبیعی به علت خاصیت حل کنندگی خوبی که دارد معمولا دارای حجم بالایی از نمکهای محلول در آب می‌شود. CO2 هوا به خاطر انحلال در آب و تولید اسید کربنیک ضعیف ، خاصیت خورندگی آب را بهبود می‌بخشد. بنابراین آب هنگام عبور از محیط‌های گوناگون مخصوصا محیط‌های آهکی مقداری از کربناتها را در خود حل می‌کند که این کربناتها همراه یونهایی مثل کلسیم ، منیزیم و … باعث ایجاد سختی موقت می‌شود که با جوشاندن از بین می‌رود. البته یونهای منیزیم و کلسیم و سایر یونهای فلزی با سولفات و نیترات و کلرو ایجاد سختی دائم می‌کنند. سختی آب باعث رسوب کردن صابون در آب می‌شود (خاصیت کف کنندگی صابون را از بین می‌برد)

اثرات زیانبخش ناخا لصیهای آب در صنعت :
آب در شیمی یکی از مهمترین حلالها می‌باشد و معمولا از آن به عنوان حلال عمومی نام می‌برند و بنابراین کاربرد اساسی در صنعت دارد که برخی از کاربردهای مهم به این شرح می‌باشد:

  • به عنوان حلال
  • به عنوان ماده اولیه برای شرکت در واکنشهای شیمیایی تهیه محصول
  • به عنوان ماده واسطه برای خارج کردن مواد ناخواسته
  • به عنوان بستر یا محیط واکنش

وجود ناخالصیها در آب باعث ایجاد رسوب در دستگاههای حرارتی و دیگ بخار می‌شود که این عمل باعث کاهش عمر مفید دستگاه می‌گردد. بخاری که از آبهای ناخالص تولید می‌شود دارای کیفیت بسیار پایینی می‌باشد به عنوان مثال سیلیس همراه بخار خارج شده و در اثر سرد شدن روی پره‌های توربین رسوب می‌کند. خوردگی بویلرها و تأسیسات حرارتی و لوله‌ها ، اتلاف مواد شیمیایی و باقی گذاشتن لکه روی محصولات غذایی و نساجی از عوارض دیگر آبهای ناخالص می‌باشد.

بهترین آب برای استفاده در صنعت آب بدون یون است اما هزینه تولید آب بدون یون بسیار بالاست. بنابراین در اکثر آزمایشگاهها و واحدهای صنعتی از آب مقطر استفاده می‌کنند همچنین در مناطق کویری و خشک که منابع آب آشامیدنی محدود می‌باشد. از روش تقطیر آب دریا برای تولید آب آشامیدنی استفاده می‌شود.

روش تقطیر آب
تقطیر یک محصول و خالص سازی آن به فراریت اجزای آن محلول یعنی اختلاف نقاط جوش آنها بستگی دارد. آب طبیعی از دو جزء حلال (آب) و مواد حل شده (انواع نمکها) تشکیل شده است. آب جزء فرار می‌باشد. در اثر حرارت آب بخار می‌شود و نمکهای موجود در آن در ظرف تقطیر به صورت رسوب باقی می‌ماند. اگر بخار آب حاصل را سرد کنیم بخار به مایع تبدیل شده و آب مقطر به دست می‌آید. با تکرار تقطیر می‌توان آب مقطر با خواص بهتری را بدست آورد.

از آب مقطر به دست آمده در آزمایشگاههای شیمی بطور گسترده استفاده می‌شود همچنین آب مقطر استریل شده در تزریقات کاربرد فراوانی دارد. آب مقطر مانند آب آشامیدنی گوارا نمی‌باشد. زیرا مقداری از اکسیژن محلول و همچنین برخی از یونهایی که باعث ایجاد طعم خوب آب می‌شود را از دست داده است. در تاسیسات آب شیرین کن بعد از اینکه آب شور را تقطیر کرده و آب مقطر تولید می‌کنند طی فرآیندهایی که روی آب انجام می‌دهند طعم آن را بهبود بخشیده و برای نوشیدن مناسب می‌سازند.

برخی خواص آب مقطر :
PH آب مقطر خنثی و در حدود 7 می‌باشد. رسانایی ویژه آن (عکس مقاومت) بسیار کم می‌باشد. زیرا رسانایی الکتریکی آب با انحلال نمکها در آن افزایش می‌یابد. دمای جوش آن پایینتر از آبهای طبیعی می‌باشد و به علت عدم وجود مواد محلول خاصیت خورندگی ندارد.

پایان مطلب

تعیین مقدار اکسیژن محلول (DO)

تعیین مقدار اکسیژن محلول (DO) 

تمام موجودات زنده برای انجام متابولیسم و تهیه انرژی جهت رشد و تولید مثل نیاز به اکسیژن به فرمهای مختلف دارند...

مقدمه:
تمام موجودات زنده برای انجام متابولیسم و تهیه انرژی جهت رشد و تولید مثل نیاز به اکسیژن به فرمهای مختلف دارند. واکنشهای هوازی دارای اهمیت خاصی بوده زیرا به اکسیژن آزاد نیاز دارند. تمام گازخای موجود در هوا به مقدارهای مختلف در آب محلولند. نیتروژن و اکسیژن بعلت حلالیت کم در آب مورد توجه می‌باشند. زیرا با آب فعل و انفعال شیمیائی انجام نداده و حلالیت آنها مستقیماً به فشار جزئی آنها بستگی دارد. حلالیت اکسیژن دردرجه حرارتهای مختلف آب متفاوت است. مقدار حلالیت اکسیژن اتمفسر در آب نسبتاً خالص از 6/14 میلیگرم در لیتر در صفر درجه سانتیگراد تا 7 میلیگرم در لیتر در 35 درجه سانتیگراد تحت فشار 1 اتمسفر متفاوت است. اکسیژن به مقدار کم در آب محلول بوده و حلالیت آن با فشار اتمسفر و درجه حرارت متغیر است. کمبود حلالیت اکسیژن در آب یکی از فاکتورهای اصلی است که ظرفیت تصفیه طبیعی آب را کاهش می‌دهد. لذا تصفیه فاضلابها قبل از ورود به رودخانه‌ها ضروری می‌گردد. اکسیژن محلول رودخانه‌ها نیز می‌توان آلودگی آنها را کنترل نمود. اکسیژن فاکتور مهمی در ایجاد خورندگی آهن و فولاد بخصوص در سیستمهای توزیع آب و بویلرها می‌باشد. لذا تعیین مقدار اکسیژن محلول برای کنترل خورندگی آب به کار می‌رود.
اساس روش اندازه‌گیری:
معمولی‌ترین روش تعیین اکسیژن محلول بر اساس آزاد کردن ید توسط اکسیژن محلول می‌باشد. ید آزاد شده عموماً توسط یک محلول احیاءکننده مانند تیوسولفات سدیم اندازه‌گیری می‌شود. چسب نشاسته خاتمه عمل را نشان می‌دهد. نشاسته ید آزاد شده را جذب نموده و رنگ آبی ایجاد می‌کند و هنگامیکه تمامی ید احیاء گردید محلول بیرنگ می‌شود.
روش و نیکلر یا ید و متری روش استانداردی برای تعیین اکسیژن محلول می‌باشد. این روش بر اساس اکسیداسیون Mn2+ به ظرفیت بالاتر (Mn4+) در محیط قلیائی توسط اکسیژن می‌باشد. منگنز با ظرفیت چهار یون ید را در محیط اسیدی به ید آزاد اکسیده می‌کند و مقدار ید آزاد شده که برابر با اکسیژن محلول می‌باشد توسط تیتزاسیون با تیوسولفات استاندارد اندازه‌‌گیری می‌شود.
در این روش وجود بعضی از مواد مانند نیتویتها و آهن سه ظرفیتی قابلیت اکسیدکنندگی I- را به I2 دارند. و نتیجه آزمایش را زیاد نشان می‌دهد. و بر عکس مواد احیاء کننده مانند S2-, So32-, Fe2+ ید را احیاء کرده و به I- تبدیل می‌کنند و نتیجه آزمایش را کمتر از حد واقعی نشان می‌دهد. بنابراین روش تصحیح نشده چنانکه اکسیژن در محیط وجود نداشته باشد با افزایش سولفات منگنز و معرف یدور قلیائی (NaOH, KI) رسوب سفید رنگ 2Mn(OH) تشکیل می‌گردد.
Mn2+ + 2OH- Mn(OH)2 

رسوب سفید رنگ
اگر در محیط اکسیژن موجود باشد مقداری از Mn2+ به ظرفیت بالاتر اکسیده شده و رسوب قهوه‌ای رنگ Mno2 ظاهر می‌گردد.
Mn(OH)2 + ½ O2 Mno2 + H2O

رسوب قهوه‌ای رنگ
اکسیداسیون Mn2+ به Mno2 به آهستگی انجام می‌گیرد بدین منظور محلول تکان داده می‌شود تا تمام اکسیژن محلول به صورت ترکیب درآید. حرکت دادن محلول برای مدت حداقل 20 ثانیه لازم است در صورتیکه آب مورد آزمایش شور باشد. زمان تماس بایستی به مراتب طولانی‌تر باشد. پس از حرکت دادن، نمونه را برای ترکیب کامل اکسیژن در جائی ساکن گذاشته و پس از مدتی به آن اسید سولفوریک اضافه می‌کنند. در محیط اسیدی Mno2 یون I- را اکسید کرده و ید آزاد می‌کند. برای انجام واکنش بطور کامل بایستی درب بطری را بست و برای حداقل 10 ثانیه آن را حرکت داد تا ید به طور یکسان در تمام محلول پخش گردد. ید حاصله را با تیوسولفات سدیم استاندارد تیتر می‌کنند.
Mno2 + 2 I- + 4H+ Mn2+ + I2 + 2H2O
I2 + 2 Na2S2o3 Na2S4O6 + 2 NaI
همانطور که اشاره شد یون نیتریت یکی از مواد مزاحم در تعیین اکسیژن محلول مب‌باشد. یون نیتریت Mn2+ را اکسیده نمی‌کند ولی ‌I- را در محیط اسیدی به I2 اکسید می‌نماید. لذا اگر نیتریت در محیط وجود داشته باشد تشخیص نقطه پایانی مشکل خواهد بود. زیرا به محض اینکه رنگ آبی معرف نشاسته و ید محو می‌گردد نیتریتها مقداری از I- را به I2 اکسید کرده و رنگ آبی دوباره ظاهر می‌گردد. برای حذف دخالت نیتریتها از آز ید سدیم (Nan3) استفاده می‌شود.
NaN3 + 9H+ 3NH3 + Na+ + NH3 + NO2- + H+ N2 + N2O + H2O
HN3 + NO2- + H+ N2 + N2O + H2O
بدین طریق دخالت نیتریتها می‌گردد.

معرفهای لازم:
محلول سولفات منگنز: مقدار 480 گرمMnSO4.4H20 یا 400 گرم MnSO4. 2H2O و یا 364 گرم MnSO4.H2O را در آب مقطر حل کرده و حجم آن را به یک لیتر برسانید.
معرف یدور و آز ید قلیائی: مقدار 500 گرم از NaOH را با 150 گرم یدور پتاسیم در آب مقطر حل کرده و حجم آن را به یک لیتر برسانید. به آن مقدار 10 گرم آز ید سدیم که در 40 سی سی آب مقطر حل شده اضافه کنید.
- اسید سولفوریک غلیظ
- نشاسته: 2 گرم نشاسته و 2/0 گرم اسید سالیسیلیک را در 100 سی سی آب مقطر گرم حل کنید.
- سدیم تیوسولفات استاندارد M 025/0: 205/6 گرم از Na2S2O3. 5H2O را در آب مقطر جوشیده سرد شده حل کرده به آن 4/0 گرم سود افزوده و در بالن ژوژه یک لیتری به حجم برسانید. این محلول را در مقابل محلول استاندارد 025/0 نرمال بیکرمات پتاسیم و یا بی یدات پتاسیم استاندارد کنید.
روش کار:
به نمونه مورد آزمایش که در بطریهای 250 سی‌سی یا 300 سی‌ سی جمع‌آوری شده مقدار 1 سی سی محلول سولفات منگنز و 1 سی سی معرف یدور و آزید قلیائی اضافه کنید. سپس درب بطری را با دقت بسته چندین بار آن را تکان داده تا رسوب هیدروکسید منگنز ظاهر گردد. بعد از ته‌نشین شدن رسوب مقدار 1 سی سی اسید سولفوریک غلیظ به آن افزوده و آن را مخلوط کنید تا رسوب بطور کامل حل شود، 200 سی سی از محلول فوق را در یک ارلن ریخته و با تیوسولفات N 025/0 تا رنگ زرد کم رنگ تیتر کنید. سپس چند قطره چسب نشاسته به آن افزوده و تیتراسیون را تا بی رنگ شدن محلول ادامه دهید. حجم تیوسولفات مصرفی را یادداشت کنید. با استفاده از معادله‌های واکنش مقدار اکسیژن محلول نمونه را بر حسب میلیگرم در لیتر محاسبه کنید.